JOURNAL ARTICLE
Loss of OCRL increases ciliary PI(4,5)P 2 in Lowe oculocerebrorenal syndrome.
Journal of Cell Science 2017 October 16
Lowe syndrome is a rare X-linked disorder characterized by bilateral congenital cataracts and glaucoma, mental retardation, and proximal renal tubular dysfunction. Mutations in OCRL, an inositol polyphosphate 5-phosphatase that dephosphorylates PI(4,5)P2 , cause Lowe syndrome. Previously we showed that OCRL localizes to the primary cilium, which has a distinct membrane phospholipid composition, but disruption of phosphoinositides in the ciliary membrane is poorly understood. Here, we demonstrate that cilia from Lowe syndrome patient fibroblasts exhibit increased levels of PI(4,5)P2 and decreased levels of PI4P. In particular, subcellular distribution of PI(4,5)P2 build-up was observed at the transition zone. Accumulation of ciliary PI(4,5)P2 was pronounced in mouse embryonic fibroblasts (MEFs) derived from Lowe syndrome mouse model as well as in Ocrl -null MEFs, which was reversed by reintroduction of OCRL. Similarly, expression of wild-type OCRL reversed the elevated PI(4,5)P2 in Lowe patient cells. Accumulation of sonic hedgehog protein in response to hedgehog agonist was decreased in MEFs derived from a Lowe syndrome mouse model. Together, our findings show for the first time an abnormality in ciliary phosphoinositides of both human and mouse cell models of Lowe syndrome.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app