Add like
Add dislike
Add to saved papers

Buyanghuanwu Decoction alleviated pressure overload induced cardiac remodeling by suppressing Tgf-β/Smads and MAPKs signaling activated fibrosis.

Buyanghuanwu Decoction (BHD), a traditional Chinese medicine recipe, is a representative prescription for the treatment of qi-deficiency and blood-stasis syndrome. In this study, the effect of BHD on pressure overload induced cardiac remodeling was investigated and possible mechanism underlying was explored. Rats were randomly divided into four groups: sham, transverse aorta constriction (TAC) with saline, TAC with telmisartan (TAC+Tel), and TAC with BHD (TAC+BHD) for 16 weeks (n=6∼8 in each group). Cardiac morphological and functional changes were evaluated by echocardiography and histological methods, the molecular alterations were detected by western blotting. Our results revealed that pressure overload prominently induced cardiac dysfunction, dilated and atrophied left ventricle, decreased cardiomyocyte cross sectional area, and fibrosis. However, BHD, similar to Tel, greatly reversed cardiac dysfunction, left ventricular dilation, and fibrosis, together with increased left ventricular wall thickness and size of cardiomyocyte. Furthermore, activated classical pro-fibrotic signaling of Tgf-β/Smads and MAPKs after TAC was dramatically suppressed by BHD or Tel treatment. Taken together, it was demonstrated in this study that BHD exerted a cardioprotective effect against pressure overload induced cardiac remodeling via inactivation of Tgf-β/Smads and MAPKs signaling triggered fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app