JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

1α,25-Dihydroxyvitamin D 3 promotes osteogenesis by promoting Wnt signaling pathway.

Diabetes mellitus (DM) remarkably affects bone metabolism and causes multiple skeletal disorders, which are associated with the increased oxidative stress that activates Forkhead family of transcription factors (FoxOs). 1α,25-Dihydroxy vitamin D3 (1,25(OH)2 D3 ), the hormonally active form of vitamin D, plays a potential role in the prevention of glucose tolerance. However, its mechanism of action in high glucose-induced energy disorders remains unclear. In vitro study shows that 1,25(OH)2 D3 promotes osteogenesis in high glucose-induced oxidative stress mainly results from increased osteoblasts proliferation and decreased apoptosis. Cells treated with 1,25(OH)2 D3 exhibit an increased osteogenic differentiation capacity and an elevated level of osteogenic phenotype (i.e. alkaline phosphatase, collagen 1, osteocalcin, and osteopontin). We also found that the effect of 1,25(OH)2 D3 on osteogenesis is achieved by FoxO1 inactivation and nuclear exclusion through PI3K/Akt pathway in a time- and dose-dependent manner. Moreover, the diversion of β-catenin from FoxO1- to Wnt/TCF4-mediated transcription was indirectly promoted by the inactivation of FoxO1. These data together reveals that the activated Wnt/β-catenin signaling is involved in the regulatory action of 1,25(OH)2 D3 on osteogenesis in oxidative stress. This study also provides a novel understanding of the effect of 1,25(OH)2 D3 on skeleton in oxidative stress condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app