Add like
Add dislike
Add to saved papers

CO2 Reduction Selective for C≥2 Products on Polycrystalline Copper with N-Substituted Pyridinium Additives.

ACS Central Science 2017 August 24
Electrocatalytic CO2 reduction to generate multicarbon products is of interest for applications in artificial photosynthetic schemes. This is a particularly attractive goal for CO2 reduction by copper electrodes, where a broad range of hydrocarbon products can be generated but where selectivity for C-C coupled products relative to CH4 and H2 remains an impediment. Herein we report a simple yet highly selective catalytic system for CO2 reduction to C≥2 hydrocarbons on a polycrystalline Cu electrode in bicarbonate aqueous solution that uses N-substituted pyridinium additives. Selectivities of 70-80% for C2 and C3 products with a hydrocarbon ratio of C≥2/CH4 significantly greater than 100 have been observed with several additives. (13)C-labeling studies verify CO2 to be the sole carbon source in the C≥2 hydrocarbons produced. Upon electroreduction, the N-substituted pyridinium additives lead to film deposition on the Cu electrode, identified in one case as the reductive coupling product of N-arylpyridinium. Product selectivity can also be tuned from C≥2 species to H2 (∼90%) while suppressing methane with certain N-heterocyclic additives.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app