Add like
Add dislike
Add to saved papers

Potential therapeutic targets for ALS: MIR206, MIR208b and MIR499 are modulated during disease progression in the skeletal muscle of patients.

Scientific Reports 2017 August 26
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motor neurons followed by muscle weakness, paralysis and death. The disease progression is extremely variable among patients, and reliable prognostic markers have not been identified. The aim of the study was to functionally characterize selected genes and microRNAs acting in the skeletal muscle of ALS patients, taking into account the duration and evolution of the disease, in order to obtain information regarding the muscle response to ALS progression. This prospective, longitudinal study enrolled 14 ALS patients and 24 age- and sex-matched healthy controls. Gene expression and histological analysis indicated an increase of MIR208B and MIR499 levels and the predominance of slow fibres, respectively, in the muscles of patients with a slower disease progression. A decreased expression of MIR206 and increased levels of HDAC4, during the progression of the disease were also observed. Taken together, our data suggest that the molecular signalling that regulates re-innervation and muscle regeneration is hampered during the progression of skeletal muscle impairment in ALS. This could provide precious hints towards defining prognostic protocols, and designing novel tailored therapeutic approaches, to improve ALS patients' care and delay disease progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app