Identification of Potent ACE Inhibitory Peptides from Wild Almond Proteins

Mozhgan Mirzapour, Karamatollah Rezaei, Miguel Angel Sentandreu
Journal of Food Science 2017, 82 (10): 2421-2431

In this study, the production, fractionation, purification and identification of ACE (angiotensin-I-converting enzyme) inhibitory peptides from wild almond (Amygdalus scoparia) proteins were investigated. Wild almond proteins were hydrolyzed using 5 different enzymes (pepsin, trypsin, chymotrypsin, alcalase and flavourzyme) and assayed for their ACE inhibitory activities. The degree of ACE inhibiting activity obtained after hydrolysis was found to be in the following order: alcalase > chymotrypsin > trypsin/pepsin > flavourzyme. The hydrolysates obtained from alcalase (IC50 = 0.8 mg/mL) were fractionated by sequential ultrafiltration at 10 and 3 kDa cutoff values and the most active fraction (<3 kDa) was further separated using reversed phase high-performance liquid chromatography (RP-HPLC). Peptide sequence identifications were carried out on highly potential fractions obtained from RP-HPLC by means of liquid chromatography coupled to electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS). Sequencing of ACE inhibitory peptides present in the fraction 26 of RP-HPLC resulted in the identification of 3 peptide sequences (VVNE, VVTR, and VVGVD) not reported previously in the literature. Sequence identification of fractions 40 and 42 from RP-HPLC, which showed the highest ACE inhibitory activities (84.1% and 86.9%, respectively), resulted in the identification of more than 40 potential ACE inhibitory sequences. The results indicate that wild almond protein is a rich source of potential antihypertensive peptides and can be suggested for applications in functional foods and drinks with respect to hindrance and mitigation of hypertension after in vivo assessment.

PRACTICAL APPLICATION: This study has shown the potential of wild almond proteins as good sources for producing ACE-inhibitory active peptides. According to this finding, peptides with higher ACE inhibitory activities could be released during the gastrointestinal digestion and contribute to the health- promoting activities of this natural protein source.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"