Add like
Add dislike
Add to saved papers

Characterization of syntrophic Geobacter communities using ToF-SIMS.

Biointerphases 2017 August 19
The aggregation of syntrophic Geobacter metallireducens and Geobacter sulfurreducens is beneficial for enhancing direct interspecies electron transfer (DIET). Although DIET was suspected to occur on the microbial community surface, the surface chemical speciation of such cocultured communities remains unclear. In order to better understand surface interactions related to DIET, the authors characterized a series of samples associated with syntrophic G. metallireducens and G. sulfurreducens using surface sensitive time-of-flight secondary ion mass spectrometry (ToF-SIMS). Principal component analysis was used in spectral analysis. Our results show that the syntrophic Geobacter aggregates are significantly different from their planktonic cells, indicating a distinct chemical composition (i.e., amino acids, fatty acids, and lipids) and structure formed on their surface. Among these characteristic components, amino acid fragments dominated in the variance, suggesting the importance of proteins in the coculture. Additionally, the quorum sensing signal molecule N-butyryl-l-homoserine lactone was observed in cocultured Geobacter aggregates, implying its role in syntrophic growth and aggregate formation. Furthermore, the electron acceptor organism G. sulfurreducens was shown to be the dominant species in syntrophic communities that drove the syntrophic growth. These results demonstrate that unique chemical compositions distinguish syntrophic Geobacter aggregates from planktonic cells and suggest that ToF-SIMS may be a promising tool to understand the syntrophic mechanism and investigate interspecies electron transfer pathways in complex biofilms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app