Add like
Add dislike
Add to saved papers

ADMM-Based Algorithm for Training Fault Tolerant RBF Networks and Selecting Centers.

In the training stage of radial basis function (RBF) networks, we need to select some suitable RBF centers first. However, many existing center selection algorithms were designed for the fault-free situation. This brief develops a fault tolerant algorithm that trains an RBF network and selects the RBF centers simultaneously. We first select all the input vectors from the training set as the RBF centers. Afterward, we define the corresponding fault tolerant objective function. We then add an -norm term into the objective function. As the -norm term is able to force some unimportant weights to zero, center selection can be achieved at the training stage. Since the -norm term is nondifferentiable, we formulate the original problem as a constrained optimization problem. Based on the alternating direction method of multipliers framework, we then develop an algorithm to solve the constrained optimization problem. The convergence proof of the proposed algorithm is provided. Simulation results show that the proposed algorithm is superior to many existing center selection algorithms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app