Add like
Add dislike
Add to saved papers

Benzene-contaminated groundwater remediation using calcium peroxide nanoparticles: synthesis and process optimization.

Nano-size calcium peroxide (nCaO2) is an appropriate oxygen source which can meet the needs of in situ chemical oxidation (ISCO) for contaminant remediation from groundwater. In the present study, an easy to handle procedure for synthesis of CaO2 nanoparticles has been investigated. Modeling and optimization of synthesis process was performed by application of response surface methodology (RSM) and central composite rotatable design (CCRD) method. Synthesized nanoparticles were characterized by XRD and FESEM techniques. The optimal synthesis conditions were found to be 5:1, 570 rpm and 10 °C for H2O2:CaSO2 ratio, mixing rate and reaction temperature, respectively. Predicted values showed to be in good agreement with experimental results (R (2) values were 0.915 and 0.965 for CaO2 weight and nanoparticle size, respectively). To study the efficiency of synthesized nanoparticles for benzene removal from groundwater, batch experiments were applied in biotic and abiotic (chemical removal) conditions by 100, 200, 400, and 800 mg/L of nanoparticles within 70 days. Results indicated that application of 400 mg/L of CaO2 in biotic condition was able to remediate benzene completely from groundwater after 60 days. Furthermore, comparison of biotic and abiotic experiments showed a great potential of microbial stimulation using CaO2 nanoparticles in benzene remediation from groundwater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app