Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Schwann cell dedifferentiation-associated demyelination leads to exocytotic myelin clearance in inflammatory segmental demyelination.

Glia 2017 November
Schwann cells (SCs), which form the peripheral myelin sheath, have the unique ability to dedifferentiate and to destroy the myelin sheath under various demyelination conditions. During SC dedifferentiation-associated demyelination (SAD) in Wallerian degeneration (WD) after axonal injury, SCs exhibit myelin and junctional instability, down-regulation of myelin gene expression and autophagic myelin breakdown. However, in inflammatory demyelinating neuropathy (IDN), it is still unclear how SCs react and contribute to segmental demyelination before myelin scavengers, macrophages, are activated for phagocytotic myelin digestion. Here, we compared the initial SC demyelination mechanism of IDN to that of WD using microarray and histochemical analyses and found that SCs in IDN exhibited several typical characteristics of SAD, including actin-associated E-cadherin destruction, without obvious axonal degeneration. However, autophagolysosome activation in SAD did not appear to be involved in direct myelin lipid digestion by SCs but was required for the separation of SC body from destabilized myelin sheath in IDN. Thus, lysosome inhibition in SCs suppressed segmental demyelination by preventing the exocytotic myelin clearance of SCs. In addition, we found that myelin rejection, which might also require the separation of SC cytoplasm from destabilized myelin sheath, was delayed in SC-specific Atg7 knockout mice in WD, suggesting that autophagolysosome-dependent exocytotic myelin clearance by SCs in IDN and WD is a shared mechanism. Finally, autophagolysosome activation in SAD was mechanistically dissociated with the junctional destruction in both IDN and WD. Thus, our findings indicate that SAD could be a common myelin clearance mechanism of SCs in various demyelinating conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app