Add like
Add dislike
Add to saved papers

Fractional amplitude of low-frequency fluctuations (fALFF) in post-stroke depression.

Depression is a common outcome following stroke, associated with reduced quality of life and poorer recovery. Despite attempts to associate depression symptoms with specific lesion sites, the neural basis of post-stroke depression remains poorly understood. Resting state fMRI has provided new insights into the neural underpinnings of post-stroke depression, but has been limited to connectivity analyses exploring interregional correlations in the time-course of activity. Other aspects of resting state BOLD signal remain unexamined. Measuring the amplitude of low frequency fluctuations allows the detection of spontaneous neural activity across the whole brain. It provides complementary information about frequency-specific local neural activity. We calculated the fractional amplitude of low frequency fluctuations (fALFF) in a group of 64 participants scanned 3 months post-stroke. Twenty showed depression symptoms when assessed with the Patient Health Questionnaire (PHQ-9). We performed analyses in both the typical 0.01-0.08 Hz range, as well as separately in the slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.073 Hz) ranges. We found significantly higher fALFF in the depressed compared to non-depressed participants in the left dorsolateral prefrontal cortex (DLPFC) and the right precentral gyrus, and a significant association between higher depression scores and higher fALFF in the left insula. The group differences were detected in the slow-5 fluctuations, while the association with depression severity was observed in the slow-4 range. We conclude that post-stroke depression can be characterised by aberrant spontaneous local neural activity, which in small samples could be a more sensitive measure than lesion volume and location.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app