Add like
Add dislike
Add to saved papers

Lightning rod resonance of a plasmonic near-field transducer.

Optics Express 2017 June 27
We demonstrate the lightning-rod resonance of a lollipop near-field transducer integrated in magnetic writer for heat-assisted magnetic recording by collecting the two-photon excited photoluminescence (TPL) signal when excited by a pulsed femto-second fiber laser tuned to the desired mode resonance. The lollipop transducer consists of a round disk and a protruding peg to take advantage of the lightning-rod effect. It is found that the TPL signal is extremely sensitive to the peg length where even a 3-5 nm deviation from the optimal peg length halves the TPL signal. This method conveniently quantifies the optical performance of an NFT device in situ as a function of geometry with a resolution of better than the light wavelength (λ) divided by 200.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app