Journal Article
Review
Add like
Add dislike
Add to saved papers

Neurotransmitters, pathways and circuits as the neural substrates of self-stimulation of the prefrontal cortex: facts and speculations.

Through a multidisciplinary approach considerable progress has been made in understanding the neural substrates of self-stimulation (SS) of the medial prefrontal cortex (MPC). Thus, neuroanatomical studies have revealed that intrinsic neurones in the MPC seem to be the central elements responsible for initiating and maintaining this phenomenon in this area of the brain. Complementary to this central finding are the electrophysiological and neurohistological data reviewed here, showing that neurones in the MPC are directly activated and have monosynaptic feed-back connections with neurones located in areas which also support SS. These findings have given rise to the hypothesis that several single feed-back pathways or single circuits exist between points of SS in the MPC and points of SS in other areas of the brain. This hypothesis implies that SS in a particular area would depend not only on the intrinsic local activity induced by the electrical stimulation but on the functional and specific activity of other nuclei in the brain. The fact that lesions of single circuits, which are apparently involved in SS of the MPC such as the medial prefrontal cortex-ventrotegmental area-medial prefrontal cortex and medial prefrontal cortex-n. dorsomedialis of the thalamus-medial prefrontal cortex, do not produce a permanent decrease of SS, together with the finding that transynaptic connections seem to exist between MPC and other areas of the brain, suggests further that a complex rather than several single independent circuits could be at the neural basis of SS of the MPC. If that were the case, then SS of the MPC would not only depend upon local and single feed-back activity but upon specific functional feed-back activity among the nuclei, which in turn have single feed-back connections with the MPC (see the concept of 'complex circuit' outlined in the section of Behavioural studies). On the basis of this hypothesis no permanent changes should be expected after lesions of single pathways since physiological and even anatomical compensation could be reached through the rest of the undamaged circuit. That terminals containing specific neurotransmitters exist in layers of the PC where electrodes for SS are located has been reviewed in this paper. Some of these neurotransmitters have been suggested to be part of the local substrates activated by SS.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app