Add like
Add dislike
Add to saved papers

Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells.

The removal rate and degradation pathway of Sulfamethoxazole (SMX) in bioelectrochemical system (BES) and the elimination dynamics of SMX in a BES driven by stacked constructed wetland-coupled microbial fuel cells (CW-MFCs) were investigated. The results found that SMX (30mgL(-1)) was rapidly degraded in the BES, and the SMX removal kinetics was simulated well by a first-order kinetic model (R(2)>0.93). Low current had no effect on the degradation products but enhanced the SMX removal rate. Biotransformation was the main pathway for the SMX elimination in the BES. The CW-MFCs supplied adequate and stable electricity (0.84-1.01V) to support the BES for rapid SMX degradation without additional energy inputs. The relative abundance of Methanosarcina (18.7%) and VadinCA11 (3.1%) increased with an increase in voltage up to 1.2V. However, the opposite was observed for Methanosaeta and Methanomassiliicoccus. The current in the BES influenced the methanogenic communities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app