Add like
Add dislike
Add to saved papers

Biomechanics of human parietal pleura in uniaxial extension.

Tension pneumothorax, a major preventable cause of battlefield death, often arises from chest trauma and is treated by needle decompression to release trapped air from the pleural cavity. Surgical simulation mannequins are often employed to train medical personnel to perform this procedure properly. Accurate reproduction of the mechanical behavior of the parietal pleura, especially in response to needle penetration, is essential to maximize the fidelity of these surgical simulators. To date, however, the design of pleura-simulating material has been largely empirical and based on subjective practitioner feel rather than on the tissue properties, which have remained unknown. In this study, we performed uniaxial extension tests on samples of cadaveric human parietal pleura. We found that the pleura was highly nonlinear and mildly anisotropic, being roughly twice as stiff in the direction parallel to the ribs vs. perpendicular to the ribs (large-strain modulus = 20.44 vs. 11.49MPa). We also did not find significant correlations for most pleural properties with age or BMI, but it must be recognized that the age range (59 ± 9.5 yrs) and BMI range (31 ± 5.3) of the donors in our study was not what one might expect from combatants, and there could be differences for younger, lighter individuals. We found a significantly higher low-strain modulus in the diabetic donors (0.213 vs. 0.100MPa), consistent with the general tendency of tissue to stiffen in diabetes. The nonlinearity and tensile strength should be considered in material design and selection for future surgical simulators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app