Add like
Add dislike
Add to saved papers

Distal airway microbiome is associated with immunoregulatory myeloid cell responses in lung transplant recipients.

BACKGROUND: Long-term survival of lung transplant recipients (LTRs) is limited by the occurrence of bronchiolitis obliterans syndrome (BOS). Recent evidence suggests a role for microbiome alterations in the occurrence of BOS, although the precise mechanisms are unclear. In this study we evaluated the relationship between the airway microbiome and distinct subsets of immunoregulatory myeloid-derived suppressor cells (MDSCs) in LTRs.

METHODS: Bronchoalveolar lavage (BAL) and simultaneous oral wash and nasal swab samples were collected from adult LTRs. Microbial genomic DNA was isolated, 16S rRNA genes amplified using V4 primers, and polymerase chain reaction (PCR) products sequenced and analyzed. BAL MDSC subsets were enumerated using flow cytometry.

RESULTS: The oral microbiome signature differs from that of the nasal, proximal and distal airway microbiomes, whereas the nasal microbiome is closer to the airway microbiome. Proximal and distal airway microbiome signatures of individual subjects are distinct. We identified phenotypic subsets of MDSCs in BAL, with a higher proportion of immunosuppressive MDSCs in the proximal airways, in contrast to a preponderance of pro-inflammatory MDSCs in distal airways. Relative abundance of distinct bacterial phyla in proximal and distal airways correlated with particular airway MDSCs. Expression of CCAAT/enhancer binding protein (C/EBP)-homologous protein (CHOP), an endoplasmic (ER) stress sensor, was increased in immunosuppressive MDSCs when compared with pro-inflammatory MDSCs.

CONCLUSIONS: The nasal microbiome closely resembles the microbiome of the proximal and distal airways in LTRs. The association of distinct microbial communities with airway MDSCs suggests a functional relationship between the local microbiome and MDSC phenotype, which may contribute to the pathogenesis of BOS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app