HDL Cholesterol, LDL Cholesterol, and Triglycerides as Risk Factors for CKD: A Mendelian Randomization Study

Matthew B Lanktree, Sébastien Thériault, Michael Walsh, Guillaume Paré
American Journal of Kidney Diseases: the Official Journal of the National Kidney Foundation 2018, 71 (2): 166-172

BACKGROUND: High-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride concentrations are heritable risk factors for vascular disease, but their role in the progression of chronic kidney disease (CKD) is unclear.

STUDY DESIGN: 2-sample Mendelian randomization analysis of data derived from the largest published lipid and CKD studies.

SETTING & PARTICIPANTS: Effect of independent genetic variants significantly associated with lipid concentrations was obtained from the Global Lipids Genetics Consortium (n=188,577), and the effect of these same variants on estimated glomerular filtration rate (eGFR), CKD (defined as eGFR<60mL/min/1.73m2 ), and albuminuria was obtained from the CKD Genetics Consortium (n=133,814).

FACTOR: Using conventional, multivariable, and Egger Mendelian randomization approaches, we assessed the causal association between genetically determined lipid concentrations and kidney traits.

OUTCOME: eGFR, dichotomous eGFR<60mL/min/1.73m2 , and albuminuria.

RESULTS: In multivariable analysis, a 17-mg/dL higher HDL cholesterol concentration was associated with an 0.8% higher eGFR (95% CI, 0.4%-1.3%; P=0.004) and lower risk for eGFR<60mL/min/1.73m2 (OR, 0.85; 95% CI, 0.77-0.93; P<0.001), while Egger analysis showed no evidence of pleiotropy. There was no evidence for a causal relationship between LDL cholesterol concentration and any kidney disease measure. Genetically higher triglyceride concentrations appeared associated with higher eGFRs, but this finding was driven by a single pleiotropic variant in the glucokinase regulator gene (GCKR). After exclusion, genetically higher triglyceride concentration was not associated with any kidney trait.

LIMITATIONS: Individual patient-level phenotype and genotype information were unavailable.

CONCLUSIONS: 2-sample Mendelian randomization analysis of data from the largest lipid and CKD cohorts supports genetically higher HDL cholesterol concentration as causally associated with better kidney function. There was no association between genetically altered LDL cholesterol or triglyceride concentration and kidney function. Further analysis of CKD outcomes in HDL cholesterol intervention trials is warranted.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"