Add like
Add dislike
Add to saved papers

Study on community structure of microbial consortium for the degradation of viscose fiber wastewater.

BACKGROUND: Enrichment culture was applied to obtain microbial consortium from activated sludge samples collected from biodegradation system, a chemical fiber plant in Hebei Province, China. Bacterial composition and community dynamic variation were assessed employing denaturing gradient gel electrophoresis fingerprinting technology based on amplified 16S rRNA genes in the entire process of enrichment culture for viscose fiber wastewater.

RESULTS: Four bacteria named as VF01, VF02, VF03, and VF04 were isolated from the microbial consortium adopting the spray-plate method. The DNA bands of these four bacteria were corresponded to the predominant DNA bands in the electrophoresis pattern. VF01, VF02, VF03, and VF04 were phylogenetically closed to Bacillus licheniformis, Bacillus subtilis, Paracoccus tibetensis, and Pseudomonas sp. by sequence analysis, respectively. The degradation effects for CODCr of single isolated strain, mixed strains, and microbial consortium (VF) originally screened from viscose fiber wastewater were determined. The degradation ability was as follows: microbial consortium (VF) > mixed strains > single isolated strain. Microbial consortium (VF) showed the optimum degradation rate of CODCr of 87% on 14th day. Degradation of pollutants sped up by bio-augmentation of four strains. The molecular weight distribution of organic matter showed that viscose fiber wastewater contained a certain amount of large molecular organic matter, which could be decomposed into smaller molecular substances by microbial consortium (VF).

CONCLUSIONS: The microbial consortium (VF) obtained from enrichment culture exhibited great potential for CODCr degradation. The screened strains had bio-augmentation functions and the addition of a mixture of four bacteria could speed up the degradation rate of pollutants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app