Add like
Add dislike
Add to saved papers

CO 2 activation and dissociation on the low miller index surfaces of pure and Ni-coated iron metal: a DFT study.

We have used spin polarized density functional theory calculations to perform extensive mechanistic studies of CO2 dissociation into CO and O on the clean Fe(100), (110) and (111) surfaces and on the same surfaces coated by a monolayer of nickel. CO2 chemisorbs on all three bare facets and binds more strongly to the stepped (111) surface than on the open flat (100) and close-packed (110) surfaces, with adsorption energies of -88.7 kJ mol-1 , -70.8 kJ mol-1 and -116.8 kJ mol-1 on the (100), (110) and (111) facets, respectively. Compared to the bare Fe surfaces, we found weaker binding of the CO2 molecules on the Ni-deposited surfaces, where the adsorption energies are calculated at +47.2 kJ mol-1 , -29.5 kJ mol-1 and -65.0 kJ mol-1 on the Ni-deposited (100), (110) and (111) facets respectively. We have also investigated the thermodynamics and activation energies for CO2 dissociation into CO and O on the bare and Ni-deposited surfaces. Generally, we found that the dissociative adsorption states are thermodynamically preferred over molecular adsorption, with the dissociation most favoured thermodynamically on the close-packed (110) facet. The trends in activation energy barriers were observed to follow that of the trends in surface work functions; consequently, the increased surface work functions observed on the Ni-deposited surfaces resulted in increased dissociation barriers and vice versa. These results suggest that measures to lower the surface work function will kinetically promote the dissociation of CO2 into CO and O, although the instability of the activated CO2 on the Ni-covered surfaces will probably result in CO2 desorption from the nickel-doped iron surfaces, as is also seen on the Fe(110) surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app