Add like
Add dislike
Add to saved papers

Rac1-mediated cardiac damage causes diastolic dysfunction in a mouse model of subacute doxorubicin-induced cardiotoxicity.

The anticancer efficacy of anthracyclines is limited by congestive heart failure. Clinically established markers of early onset of cardiotoxicity following anthracycline treatment and preventive measures are missing. Although statins are reported to alleviate anthracycline-induced cardiotoxicity in vivo, the molecular mechanisms involved remain elusive. In vitro data point to Rac1 as major target of the cytoprotective statin effects. Here we investigated whether specific inhibition of Rac1 by NSC23766 is as effective as lovastatin in preventing subacute cardiotoxicity following doxorubicin treatment. C57BL/6 mice were treated over 3 weeks with multiple low doses of doxorubicin (6 × 3 mg/kg BW, i.p.) and the level of DNA damage, apoptosis and regenerative proliferation as well as pro-inflammatory, pro-fibrotic and oxidative stress responses were investigated. Moreover, heart function was monitored by echocardiography. Doxorubicin induced subacute cardiotoxicity which was reflected on the level of residual DNA damage, frequency of apoptotic and mitotic cells as well as elevated mRNA expression of markers of heart failure, remodeling and mitochondrial biogenesis. These molecular markers of cardiotoxicity were mitigated to a similar extent by co-treatment with either lovastatin (10 mg/kg BW, p.o.) or NSC23766 (5 mg/kg BW, i.p.) three times a week. Moreover, doxorubicin caused diastolic dysfunction as reflected by increased E-wave acceleration time (EAT), which again was prevented by pharmacological inhibition of Rac1. Inhibition of Rac1 signaling is of major relevance for the cardioprotective effects of lovastatin in the context of anthracycline-induced cardiotoxicity. Moreover, EAT is a useful marker of subacute cardiotoxicity caused by persisting harmful effects of doxorubicin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app