Add like
Add dislike
Add to saved papers

Neonatal Nav1.5 protein expression in normal adult human tissues and breast cancer.

Expression of the neonatal splice variant of the voltage-gated sodium channel α-subunit (VGSC) subtype Nav1.5 (nNav1.5), encoded by the gene SCN5A, was shown earlier to be upregulated in human breast cancer (BCa), both in vitro and in vivo. Channel activity promoted BCa invasion of Matrigel® in vitro and metastasis in vivo. Consequently, expression of nNav1.5 has been proposed as a functional biomarker of BCa cells with metastatic potential. Here, we have determined immunohistochemically both nNav1.5 and total VGSC (tVGSC) protein expression in a range of adult human tissues. Some VGSC protein was expressed in normal colon, small intestine, stomach, prostate, bladder and breast. As expected, high levels of VGSC protein were expressed in brain, skeletal muscle and cardiac muscle. On the other hand, nNav1.5 protein was not expressed in any of the normal tissues tested except breast where a low-level of protein was present. In comparison to normal breast, nNav1.5 protein expression in BCa was consistently widespread and occurred at a significantly higher level. We also questioned whether there was any relationship between the nNav1.5 protein expression and the estrogen receptor (ERα) status of BCa and obtained the following results. First, all cases lacking nNav1.5 were positive for ERα. Second, in all ERα-negative tissues, nNav1.5 protein was expressed in plasma membrane. Third, however, in ERα-positive cases, nNav1.5 protein expression was observed in both plasma membrane and cytoplasm. In conclusion, nNav1.5 protein has a restricted expression pattern among human tissues. High level expression occurs in BCa and associates with ERα status. These results further support the proposition that nNav1.5 is a novel biomarker of metastatic BCa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app