Add like
Add dislike
Add to saved papers

Decoy receptor 3 down-regulates centrosomal protein 70 kDa specifically in rheumatoid synovial fibroblasts.

OBJECTIVES: Decoy receptor 3 (DcR3) competitively binds to Fas ligand, lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpes virus entry mediator on T cells (LIGHT) and TNF-like ligand 1A (TL1A), thereby preventing their effects. Using a microarray assay, we previously newly identified centrosomal protein 70 kDa (CEP70) as one of the genes whose expression in fibroblast-like synoviocytes from patients with rheumatoid arthritis (RA-FLS) is reduced by DcR3. Here, we investigated the significance of DcR3 regulation of CEP70 for RA-FLS.

METHODS: Synovial samples were obtained from RA patients who had never been treated with biologics and from osteoarthritis (OA) patients. CEP70 mRNA expression was quantified using RT-qPCR analysis. CEP70 protein expression was assessed using immunohistochemical and western blot analyses.

RESULTS: CEP70 was expressed predominantly in the superficial lining layer in RA synovial tissue. CEP70 expression was dose-dependently downregulated by DcR3-Fc in RA-FLS but was not downregulated in OA-FLS. TL1A antibody prevented the DcR3-Fc inhibitory effects on CEP70 expression in RA-FLS.

CONCLUSIONS: These results indicated that DcR3 reduces CEP70 expression in RA-FLS by binding to membrane-bound TL1A and may suppress RA-FLS proliferation. The reduction in CEP70 expression by DcR3/TL1A signaling may control the hyperplasia of RA synovium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app