Add like
Add dislike
Add to saved papers

Opposing Roles of Rapid Dopamine Signaling Across the Rostral-Caudal Axis of the Nucleus Accumbens Shell in Drug-Induced Negative Affect.

Biological Psychiatry 2017 December 2
BACKGROUND: Negative reinforcement theories of drug addiction posit that addicts use drugs to alleviate negative mood states. In a preclinical model developed in our laboratory, rats exhibit negative affect to a normally rewarding taste cue when it predicts impending but delayed cocaine. The emergence of this state is accompanied by a reduction in dopamine concentration in the rostral nucleus accumbens shell. However, the rostral and caudal regions of the shell have been implicated in promoting opposing appetitive and aversive states, respectively. Here, we tested whether dopamine transmission along the rostral-caudal axis of the shell plays differential roles in the emergence of drug-induced negative affect.

METHODS: In TH::Cre rats, the dopaminergic pathways from the ventral tegmental area to the rostral and caudal regions of the shell were optogenetically stimulated during intraoral delivery of a taste cue signaling delayed cocaine. Affective responses to the taste cue were measured using taste reactivity, and optical self-stimulation of the rostral and caudal shells was also examined.

RESULTS: Optical stimulation of the rostral shell during tastant infusion prevented the emergence of negative affect, but activation of the caudal shell exacerbated aversive responses. These effects endured in the absence of optical stimulation, and the degree of negative affect in our model predicted self-stimulation responding.

CONCLUSIONS: These findings reveal unprecedented, pronounced, and opposing roles of rapid dopamine signaling across the rostral-caudal axis of the nucleus accumbens in the control of drug-induced negative affect, a hallmark of continued drug seeking and use in human addicts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app