Add like
Add dislike
Add to saved papers

Characterization of serotonin-induced inhibition of excitatory synaptic transmission in the anterior cingulate cortex.

Molecular Brain 2017 June 13
Excitatory synaptic transmission in central synapses is modulated by serotonin (5-HT). The anterior cingulate cortex (ACC) is an important cortical region for pain perception and emotion. ACC neurons receive innervation of projecting serotonergic nerve terminals from raphe nuclei, but the possible effect of 5-HT on excitatory transmission in the ACC has not been investigated. In the present study, we investigated the role of 5-HT on glutamate neurotransmission in the ACC slices of adult mice. Bath application of 5-HT produced dose-dependent inhibition of evoked excitatory postsynaptic currents (eEPSCs). Paired pulse ratio (PPR) was significantly increased, indicating possible presynaptic effects of 5-HT. Consistently, bath application of 5-HT significantly decreased the frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs). By contrast, amplitudes of sEPSCs and mEPSCs were not significantly affected. After postsynaptic application of G protein inhibitor GDP-β-S, 5-HT produced inhibition of eEPSCs was significantly reduced. Finally, NAN-190, an antagonist of 5-HT1A receptor, significantly reduced postsynaptic inhibition of 5-HT and abolished presynaptic inhibition. Our results strongly suggest that presynaptic as well as postsynaptic 5-HT receptor including 5-HT1A subtype receptor may contribute to inhibitory modulation of glutamate release as well as postsynaptic responses in the ACC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app