RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rapid Prediction of Hematologic Acute Radiation Syndrome in Radiation Injury Patients Using Peripheral Blood Cell Counts.

Radiation Research 2017 August
Rapid clinical triage of radiation injury patients is essential for determining appropriate diagnostic and therapeutic interventions. We examined the utility of blood cell counts (BCCs) in the first three days postirradiation to predict clinical outcome, specifically for hematologic acute radiation syndrome (HARS). We analyzed BCC test samples from radiation accident victims (n = 135) along with their clinical outcome HARS severity scores (H1-4) using the System for Evaluation and Archiving of Radiation Accidents based on Case Histories (SEARCH) database. Data from nonirradiated individuals (H0, n = 132) were collected from an outpatient facility. We created binary categories for severity scores, i.e., 1 (H0 vs. H1-4), 2 (H0-1 vs. H2-4) and 3 (H0-2 vs. H3-4), to assess the discrimination ability of BCCs using unconditional logistic regression analysis. The test sample contained 454 BCCs from 267 individuals. We validated the discrimination ability on a second independent group comprised of 275 BCCs from 252 individuals originating from SEARCH (HARS 1-4), an outpatient facility (H0) and hospitals (e.g., leukemia patients, H4). Individuals with a score of H0 were easily separated from exposed individuals based on developing lymphopenia and granulocytosis. The separation of H0 and H1-4 became more prominent with increasing hematologic severity scores and time. On day 1, lymphocyte counts were most predictive for discriminating binary categories, followed by granulocytes and thrombocytes. For days 2 and 3, an almost complete separation was achieved when BCCs from different days were combined, supporting the measurement of sequential BCC. We found an almost complete discrimination of H0 vs. irradiated individuals during model validation (negative predictive value, NPV > 94%) for all three days, while the correct prediction of exposed individuals increased from day 1 (positive predictive value, PPV 78-89%) to day 3 (PPV > 90%). The models were unable to provide predictions for 10.9% of the test samples, because the PPVs or NPVs did not reach a 95% likelihood defined as the lower limit for a prediction. We developed a prediction model spreadsheet to provide early and prompt diagnostic predictions and therapeutic recommendations including identification of the worried well, requirement of hospitalization or development of severe hematopoietic syndrome. These results improve the provisional classification of HARS. For the final diagnosis, further procedures (sequential diagnosis, retrospective dosimetry, clinical follow-up, etc.) must be taken into account. Clinical outcome of radiation injury patients can be rapidly predicted within the first three days postirradiation using peripheral BCC.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app