Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Carbon Dioxide Fluctuations Are Associated with Changes in Cerebral Oxygenation and Electrical Activity in Infants Born Preterm.

OBJECTIVES: To evaluate the effects of acute arterial carbon dioxide partial pressure changes on cerebral oxygenation and electrical activity in infants born preterm.

STUDY DESIGN: This retrospective observational study included ventilated infants born preterm with acute fluctuations of continuous end-tidal CO2 (etCO2 ) as a surrogate marker for arterial carbon dioxide partial pressure, during the first 72 hours of life. Regional cerebral oxygen saturation and fractional tissue oxygen extraction were monitored with near-infrared spectroscopy. Brain activity was monitored with 2-channel electroencephalography. Spontaneous activity transients (SATs) rate (SATs/minute) and interval between SATs (in seconds) were calculated. Ten-minute periods were selected for analysis: before, during, and after etCO2 fluctuations of ≥5  mm Hg.

RESULTS: Thirty-eight patients (mean ± SD gestational age of 29 ± 1.8 weeks) were included, with 60 episodes of etCO2 increase and 70 episodes of etCO2 decrease. During etCO2 increases, brain oxygenation increased (regional cerebral oxygen saturation increased, fractional tissue oxygen extraction decreased; P < .01) and electrical activity decreased (SATs/minute decreased, interval between SATs increased; P < .01). All measures recovered when etCO2 returned to baseline. During etCO2 decreases, brain oxygenation decreased (regional cerebral oxygen saturation decreased, fractional tissue oxygen extraction decreased; P < .01) and brain activity increased (SATs/minute increased, P < .05), also with recovery after return of etCO2 to baseline.

CONCLUSION: An acute increase in etCO2 is associated with increased cerebral oxygenation and decreased brain activity, whereas an acute decrease is associated with decreased cerebral oxygenation and slightly increased brain activity. Combining continuous CO2 monitoring with near-infrared spectroscopy may enable the detection of otherwise undetected fluctuations in arterial carbon dioxide partial pressure that may be harmful to the neonatal brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app