Add like
Add dislike
Add to saved papers

Natural killer T cell sensitization during neonatal respiratory syncytial virus infection induces eosinophilic lung disease in re-infected adult mice.

Respiratory syncytial virus (RSV) is a major viral pathogen that causes severe lower respiratory tract infections in infants and the elderly worldwide. Infants with severe RSV bronchiolitis tend to experience more wheezing and asthma in later childhood. Because invariant natural killer T (iNKT) cells are associated with the asthma pathology, we investigated whether neonatal iNKT cells are involved in the aggravation of pulmonary diseases following RSV infection in mice. Intranasal exposure to the iNKT cell ligand α-galactosylceramide (α-GC) with RSV primary infection in neonatal mice elicited neither cytokine production (except for a slight increase of IL-5) nor pulmonary eosinophilia, despite the presence of both CD1d+ cells and NKT cells. Interestingly, in adult mice re-infected with RSV, neonatal iNKT cell sensitization by α-GC during RSV primary infection resulted in much higher levels of pulmonary Th2 cytokines and elevated eosinophilia with airway hyperresponsiveness, whereas this was not observed in cd1d knockout mice. In contrast, α-GC priming of adults during RSV re-infection did not induce more severe airway symptoms than RSV re-infection in the absence of α-GC. α-GC co-administration during RSV primary infection facilitated RSV clearance regardless of age, but viral clearance following re-infection was not iNKT cell-dependent. This study clearly demonstrates that RSV-induced immune responses can be altered by iNKT cells, suggesting that neonatal iNKT cell sensitization during RSV primary infection is associated with exacerbation of pulmonary diseases following RSV re-infection in adulthood.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app