Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Li Electrochemical Tuning of Metal Oxide for Highly Selective CO 2 Reduction.

ACS Nano 2017 June 28
Engineering active grain boundaries (GBs) in oxide-derived (OD) electrocatalysts is critical to improve the selectivity in CO2 reduction reaction (CO2 RR), which is becoming an increasingly important pathway for renewable energy storage and usage. Different from traditional in situ electrochemical reduction under CO2 RR conditions, where some metal oxides are converted into active metallic phases but with decreased GB densities, here we introduce the Li electrochemical tuning (LiET) method to controllably reduce the oxide precursors into interconnected ultrasmall metal nanoparticles with enriched GBs. By using ZnO as a case study, we demonstrate that the LiET-Zn with freshly exposed GBs exhibits a CO2 -to-CO partial current of ∼23 mA cm-2 at an overpotential of -948 mV, representing a 5-fold improvement from the OD-Zn with GBs eliminated during the in situ electro-reduction process. A maximal CO Faradaic efficiency of ∼91.1% is obtained by LiET-Zn on glassy carbon substrate. The CO2 -to-CO mechanism and interfacial chemistry are further probed at the molecular level by advanced in situ spectroelectrochemical technique, where the reaction intermediate of carboxyl species adsorbed on LiET-Zn surface is revealed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app