Add like
Add dislike
Add to saved papers

Argininic acid alters markers of cellular oxidative damage in vitro: Protective role of antioxidants.

We, herein, investigated the in vitro effects of argininic acid on thiobarbituric acid-reactive substances (TBA-RS), total sulfhydryl content and on the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the blood, kidney and liver of 60-day-old rats. We also verified the influence of the antioxidants (each at 1.0mM) trolox and ascorbic acid, as well as of NG -nitro-l-arginine methyl ester (L-NAME) at 1.0mM, a nitric oxide synthase inhibitor, on the effects elicited by argininic acid on the parameters tested. The liver, renal cortex and renal medulla were homogenized in 10vol (1:10w/v) of 20mM sodium phosphate buffer, pH 7.4, containing 140mM KCl; and erythrocytes and plasma were prepared from whole blood samples obtained from rats. For in vitro experiments, the samples were pre-incubated for 1h at 37°C in the presence of argininic acid at final concentrations of 0.1, 1.0 and 5.0μM. Control experiments were performed without the addition of argininic acid. Results showed that argininic acid (5.0μM) enhanced CAT and SOD activities and decreased GSH-Px activity in the erythrocytes, increased CAT and decreased GSH-Px activities in the renal cortex and decreased CAT and SOD activities in the renal medulla of 60-day-old rats, as compared to the control group. Antioxidants and/or L-NAME prevented most of the alterations caused by argininic acid on the oxidative stress parameters evaluated. Data suggest that argininic acid alters antioxidant defenses in the blood and kidney of rats; however, in the presence of antioxidants and L-NAME, most of these alterations in oxidative stress were prevented. These findings suggest that oxidative stress may be make an important contribution to the damage caused by argininic acid in hyperargininemic patients and that treatment with antioxidants may be beneficial in this pathology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app