Add like
Add dislike
Add to saved papers

Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues.

ACS Nano 2017 June 28
Gold nanoparticles (AuNPs) with simultaneous plasmonic and biocatalytic properties provide a promising approach to developing versatile bioassays. However, the combination of AuNPs' intrinsic enzyme-mimicking properties with their surface-enhanced Raman scattering (SERS) activities has yet to be explored. Here we designed a peroxidase-mimicking nanozyme by in situ growing AuNPs into a highly porous and thermally stable metal-organic framework called MIL-101. The obtained AuNPs@MIL-101 nanozymes acted as peroxidase mimics to oxidize Raman-inactive reporter leucomalachite green into the active malachite green (MG) with hydrogen peroxide and simultaneously as the SERS substrates to enhance the Raman signals of the as-produced MG. We then assembled glucose oxidase (GOx) and lactate oxidase (LOx) onto AuNPs@MIL-101 to form AuNPs@MIL-101@GOx and AuNPs@MIL-101@LOx integrative nanozymes for in vitro detection of glucose and lactate via SERS. Moreover, the integrative nanozymes were further explored for monitoring the change of glucose and lactate in living brains, which are associated with ischemic stroke. The integrative nanozymes were then used to evaluate the therapeutic efficacy of potential drugs (such as astaxanthin for alleviating cerebral ischemic injuries) in living rats. They were also employed to determine glucose and lactate metabolism in tumors. This study not only demonstrated the great promise of combining AuNPs' multiple functionalities for versatile bioassays but also provided an interesting approach to designing nanozymes for biomedical and catalytic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app