Add like
Add dislike
Add to saved papers

Lysosomal destabilization activates the NLRP3 inflammasome in human umbilical vein endothelial cells (HUVECs).

Inflammation is a crucial component in the pathogenesis of many vascular diseases, such as atherosclerosis and diabetes. Inflammasomes are intracellular signalling complexes whose activation promotes inflammation. Nucleotide-binding domain and Leucine-rich repeat Receptor containing a Pyrin domain 3 (NLRP3) is a pattern recognition receptor (PRR) forming the best-known inflammasome. Disturbances in NLRP3 have been associated with multiple diseases. The purpose of this study was to explore the lysosomal destabilization-related NLRP3 inflammasome signaling pathway in human endothelial cells. In order to prime and activate NLRP3, human umbilical vein cells (HUVECs) were exposed to TNF-α and the lysosomal destructive agent Leusine-Leusine-O-Methylesther (Leu-Leu-OMe), respectively. A caspase-1 inhibitor was used to block caspase-1's enzymatic function and an interleukin 1 receptor antagonist (IL-1RA) to prevent any possible secondary effects of IL-1β. Leu-Leu-OMe increased the expression of NLRP3, IL-1β, and IL-18 in HUVECs. Exposure to Leu-Leu-OMe significantly promoted the production of IL-6 and IL-8 in primed HUVECs; this effect was prevented by the pre-treatment of cells with an IL-1RA. Our results suggest that lysosomal destabilization activates the NLRP3 inflammasome pathway that promotes the production of IL-6 and IL-8 in an autocrine manner in HUVEC cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app