Add like
Add dislike
Add to saved papers

MALAT1 Modulates TGF-β1-Induced Endothelial-to-Mesenchymal Transition through Downregulation of miR-145.

BACKGROUND/AIMS: Endothelial-to-mesenchymal transition (EndMT) plays significant roles under various pathological conditions including cardiovascular diseases, fibrosis, and cancer. EndMT of endothelial progenitor cells (EPCs) contributes to neointimal hyperplasia following cell therapy Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA) that promotes metastasis and cancer. MicroRNA-145 (miR-145) is a tumor suppressor that has been reported to inhibit SMAD3-mediated epithelial-to-mesenchymal transition (EMT) of cancer cells. In the present study, we investigated the role of MALAT1 and miR-145 in EndMT of human circulating EPCs induced by transforming growth factor beta1 (TGF-β1).

METHODS: Human circulating EPCs were isolated and characterized by fluorescence-activated cell sorting (FACS). Expression levels of EndMT markers were assessed by qRT-PCR and western blotting. Alpha-smooth muscle actin (α-SMA) expression was measured by cell immunofluorescence staining. The regulatory relationship between MALAT1 and miR-145 and its target genes, TGFBR2 (TGFβ receptortype II) and SMAD3 (mothers against decapentaplegic homolog 3) was analyzed using the luciferase reporter assay.

RESULTS: We found that EndMT of EPCs induced by TGF-β1 is accompanied by increased MALAT1 expression and decreased miR-145 expression, and MALAT1 and miR-145 directly bind and reciprocally repress each other in these cells. Dual-Luciferase Reporter assay indicated that miR-145 inhibits TGF-β1-induced EndMT by directly targeting TGFBR2 and SMAD3.

CONCLUSIONS: MALAT1 modulates TGF-β1-induced EndMT of EPCs through regulation of TGFBR2 and SMAD3 via miR-145. Thus, the MALAT1-miR-145-TGFBR2/SMAD3 signaling pathway plays a key role in TGF-β1-induced EndMT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app