JOURNAL ARTICLE

Warfarin Management and Outcomes in Patients with Nonvalvular Atrial Fibrillation Within an Integrated Health Care System

JaeJin An, Fang Niu, Chengyi Zheng, Nazia Rashid, Robert A Mendes, Diana Dills, Lien Vo, Prianka Singh, Amanda Bruno, Daniel T Lang, Paul T Le, Kristin P Jazdzewski, Gustavus Aranda
Journal of Managed Care & Specialty Pharmacy 2017, 23 (6): 700-712
28530526

BACKGROUND: Warfarin is a common treatment option to manage patients with nonvalvular atrial fibrillation (NVAF) in clinical practice. Understanding current pharmacist-led anticoagulation clinic management patterns and associated outcomes is important for quality improvement; however, currently little evidence associating outcomes with management patterns exists.

OBJECTIVES: To (a) describe warfarin management patterns and (b) evaluate associations between warfarin treatment and clinical outcomes for patients with NVAF in an integrated health care system.

METHODS: A retrospective cohort study was conducted among NVAF patients with warfarin therapy between January 1, 2006, and December 31, 2011, using Kaiser Permanente Southern California data, and followed until December 31, 2013. Management patterns related to international normalized ratio (INR) monitoring, anticoagulation clinic pharmacist intervention (consultation), and warfarin dose adjustments were investigated along with yearly attrition rates, time-in-therapeutic ranges (TTRs), and clinical outcomes (stroke or systemic embolism and major bleeding). Descriptive statistics and multivariable Cox proportional hazard models were used to determine associations between TTR and clinical outcomes.

RESULTS: A total of 32,074 NVAF patients on warfarin treatment were identified and followed for a median of 3.8 years. About half (49%) of the patients were newly initiating warfarin therapy. INR monitoring and pharmacist interventions were conducted roughly every 3 weeks after 6 months of warfarin treatment. Sixty-three percent of the study population had ≥ 1 warfarin dose adjustments with a mean (SD) of 6.7 (6.3) annual dose adjustments. Warfarin dose adjustments occurred at a median of 1 day (interquartile ranges [IQR] 1-3) after the INR measurement. Yearly attrition rate was from 3.3% to 6.3% during the follow-up, and median (IQR) TTR was 61% (46%-73%). Patients who received frequent INR monitoring (≥ 27 times per year), pharmacist interventions (≥ 24 times per year), or frequently adjusted warfarin dose (≥ 11 times per year) consistently showed poor TTRs (mean TTR for the highest quartiles was 45.3%-48.3%). A higher TTR was associated with a lower risk of clinical outcomes regardless of frequency of INR monitoring, pharmacist interventions, or number of dose adjustments. Patients whose TTRs were < 65%, even with frequent pharmacist interventions, had similar stroke or systemic embolism event rates, as compared with patients with TTRs < 65% and less frequent interventions (1.88 vs. 1.54 stroke or systemic embolism rates per 100 person-years, respectively, P = 0.78). The lowest TTR quartile (< 46%) was associated with a 3 times higher risk of stroke or systemic embolism (hazard ratio [HR] = 3.19, 95% CI = 2.71-3.77) and a 2 times higher risk of major bleeding (HR = 2.10, 95% CI = 1.96-2.24) compared with the highest TTR quartile (≥ 73%).

CONCLUSIONS: Despite close monitoring with timely warfarin dose adjustments, there were still a substantial number of challenging patients whose TTRs were suboptimal despite a higher number of pharmacist interventions. These patients eventually experienced more stroke or systemic embolism and bleeding events among NVAF patients managed by anticoagulation clinics. New individualized treatment or management strategies for patients who are not able to reach optimal therapeutic ranges are necessary to improve outcomes.

DISCLOSURES: This research and manuscript were funded by Bristol-Myers Squibb Company and Pfizer. Authors from Bristol-Myers Squibb Company and Pfizer participated in the design of the study, interpretation of the data, review/revision of the manuscript, and approval of the final version of the manuscript. An received a grant for research support from Bristol-Myers Squibb/Pfizer. Niu, Rashid, and Zheng received a grant from Bristol-Myers Squibb/Pfizer to their institutions for salary reimbursement. Vo, Singh, and Aranda are employed by Bristol-Myers Squibb; Bruno was employed by Bristol-Myers Squibb at the time of this study. Mendes and Dills are employed by Pfizer, and Mendes was a member of the Pfizer Cardiovascular and Metabolic Field Medical Team during the time of this study. Lang, Jazdzewski, and Le have no known conflicts of interest to report. Study concept and design were contributed primarily by An and Rashid, along with the other authors. Niu took the lead in data collection, along with Zheng, and data interpretation was performed by An, along with Mendes and Dills, with assistance from the other authors. The manuscript was written by An and revised by Mendes, Dills, Vo, Singh, Bruno, and Aranda, along with Lang, Le, and Jazdezewski. Part of this study's findings was presented at the CHEST 2015 Annual Meeting in Montreal, Canada, on October 28, 2015.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
28530526
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"