JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Red blood cell storage time and transfusion: current practice, concerns and future perspectives.

Red blood cells (RBCs) units are the most requested transfusion product worldwide. Indications for transfusion include symptomatic anaemia, acute sickle cell crisis, and acute blood loss of more than 30% of the blood volume, with the aim of restoring tissue oxygen delivery. However, stored RBCs from donors are not a qualitative equal product, and, in many ways, this is a matter of concern in the transfusion practice. Besides donor-to-donor variation, the storage time influences the RBC unit at the qualitative level, as RBCs age in the storage bag and are exposed to the so-called storage lesion. Several studies have shown that the storage lesion leads to post-transfusion enhanced clearance, plasma transferrin saturation, nitric oxide scavenging and/or immunomodulation with potential unwanted transfusion-related clinical outcomes, such as acute lung injury or higher mortality rate. While, to date, several studies have claimed the risk or deleterious effects of "old" vs "young" RBC transfusion regimes, it is still a matter of debate, and consideration should be taken of the clinical context. Transfusion-dependent patients may benefit from transfusion with "young" RBC units, as it assures longer inter-transfusion periods, while transfusion with "old" RBC units is not itself harmful. Unbiased Omics approaches are being applied to the characterisation of RBC through storage, to better understand the (patho)physiological role of microparticles (MPs) that are found naturally, and also on stored RBC units. Perhaps RBC storage time is not an accurate surrogate for RBC quality and there is a need to establish which parameters do indeed reflect optimal efficacy and safety. A better Omics characterisation of components of "young" and "old" RBC units, including MPs, donor and recipient, might lead to the development of new therapies, including the use of engineered RBCs or MPs as cell-based drug delivering tools, or cost-effective personalised transfusion strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app