JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Mode selection for electrostatic beam resonators based on motional resistance and quality factor.

An analytical comparison between the fundamental mode and higher modes of vibration for an electrostatic beam resonator is presented. Multiple mode numbers can be matched to a desired resonance frequency through appropriate scaling. Therefore, it is important to determine which mode yields the best performance. A dynamic model of the resonator is derived and then used to determine the motional resistance for each mode. The resulting equation provides the basis for comparing performance between modes using motional resistance and quality factor. As a demonstration of the approach, a quality factor model that has been previously validated experimentally is introduced. Numerical results for silicon resonators indicate that the fundamental mode can provide a lower motional resistance and higher quality factor when the resonators under comparison have the same aspect ratio or the same stiffness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app