Comparative Study
In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Actions of three local anaesthetics: lidocaine, bupivacaine and ropivacaine on guinea pig papillary muscle sodium channels (Vmax).

The new local anaesthetic ropivacaine (LEA 103) like lidocaine and bupivacaine used as references, blocked cardiac sodium channels in a use-dependent fashion. At equimolar concentrations lidocaine had the lowest efficacy and bupivacaine the highest. The action potential was shortened and the plateau was depressed at high concentrations of each drug. Pacing a papillary muscle at 3.3 Hz in the presence of all three drugs resulted in a marked use-dependent accumulation of block (P less than 0.01). The accumulated block slowly dissipated after rest. At -90 mV holding (= resting) potential, and at a concentration of 10 microM, the time constant for recovery from block was 186 msec. in lidocaine (n = 4), 1.4 sec. in ropivacaine (n = 7), and 2.1 sec. in bupivacaine (n = 7). Lidocaine decreased Vmax progressively at high rates of stimulation, but not significantly at rates below 2 Hz. Ropivacaine progressively decreased Vmax significantly at rates above 1 Hz, but to a lesser degree than bupivacaine. The use-dependent action of the drugs was increased at more depolarized (less negative) holding potentials, whereas at more hyperpolarized potentials the block was diminished. Lidocaine and ropivacaine could be readily dissociated from the receptors at more hyperpolarized membrane potentials (-100 to -120 mV), whereas bupivacaine bound much harder. All three drugs blocked sodium channels more effectively after a long single conditioning pulse. Bupivacaine had the most prominent effect, and lidocaine was least effective. Bupivacaine and ropivacaine seem to interact with the inactivated state of the sodium channels, whereas lidocaine acted on both the open and on the inactivated state of the channels.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app