Add like
Add dislike
Add to saved papers

In vivo reporter gene mutation and micronucleus assays in gpt delta mice treated with a flame retardant decabromodiphenyl ether.

Polybrominated diphenyl ethers (PBDEs), a class of brominated flame retardants, have been widely used as additive flame retardants. Recently, the use of brominated flame retardants has been restricted or prohibited under various legislative acts because of the persistence, bioaccumulation potential, and toxicity of these compounds. However, there are also additional concerns regarding environmental contamination and human exposure to PBDEs resulting from informal recycling technology. Decabromodiphenyl ether (decaBDE), one type of PBDE, has carcinogenic potential in the livers of rodents. Although one study has shown that decaBDE exerts genotoxic effects, the other in vitro and in vivo studies were negative for such effects. Thus, it remains unknown whether genotoxic mechanisms are involved in decaBDE-induced hepatocarcinogenesis in rodents. In this study, to explore the genotoxicity of decaBDE in mice, particularly in the context of carcinogenesis, we performed micronucleus assays in the bone marrow and reporter gene mutation assays in the liver using gpt delta mice treated with decaBDE at carcinogenic doses for 28days. Our results demonstrated negative results in micronucleus tests and reporter gene mutation assays. Thus, decaBDE did not exert genotoxic effects at carcinogenic target sites and did not show positive results in conventional in vivo genotoxicity tests in mice for 4-week treatment. Overall, comprehensive evaluation using in vivo genotoxicity data in rats and our data indicated that nongenotoxic mechanisms may be responsible for decaBDE-induced hepatocarcinogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app