Add like
Add dislike
Add to saved papers

Fetal costello syndrome with neuromuscular spindles excess and p.Gly12Val HRAS mutation.

Costello syndrome (CS) is a rare multiple congenital disorder caused by activating germline mutations in HRAS gene and is characterized by coarse facial features, severe feeding difficulties, failure to thrive, mild to severe intellectual disability, severe postnatal growth retardation, cardiac abnormalities or cancer predisposition. Phenotypic spectrum associated with HRAS mutations is broad, ranging from attenuated CS phenotype to neonatal and lethal forms with limited genotype-phenotype correlations. Congenital myopathy with neuromuscular spindle excess has been rarely described in the literature. We report a new severe fetal case of CS with distal arthrogryposis due to neuromuscular spindle excess, confirmed by the detection of the p.Gly12Val mutation in HRAS gene. This case emphasizes the fact that HRAS is the only gene responsible for neuromuscular spindle excess, underlines a correlation between p.Gly12Val mutation and severe CS phenotype and points out the importance of a muscle biopsy performed according to the suitable procedure in neuromuscular disorders for any fetal arthrogryposis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app