Add like
Add dislike
Add to saved papers

Function and mechanism of mesoporous bioactive glass adsorbed epidermal growth factor for accelerating bone tissue regeneration.

Biomedical Materials 2017 April 29
Mesoporous bioactive glass (MBG) has been demonstrated to play a vital role in bone tissue engineering due to its bioactivity, biocompatibility, and osteoinduction properties. Here, we report that MBG grafted with an amino group (MBG-NH2 ) and MBG-NH2 adsorbed epidermal growth factor (EGF) (MBG-NH2 /EGF) sustained-release EGF, and MBG-NH2/EGF could accelerate osteoblast differentiation and mineralization in MC3T3-E1 cells. We found that MBG-NH2 could promote bone-like deposit formation and Ca deposition in vitro. Intriguingly, we observed that MBG-NH2 /EGF enhanced MC3T3-E1 cell adhesion. We also showed that extracellular signal-regulated kinase 1/2 (ERK1/2) was phosphorylated when MC3T3-E1 cells were cultured on MBG-NH2 /EGF. Interestingly, the transcription factor Runx2, important for osteoblast differentiation, was also activated when MC3T3-E1 cells were cultured on MBG-NH2 /EGF. We showed that MC3T3-E1 cells cultured on MBG-NH2 /EGF activating Runx2 was through ERK1/2 phosphorylation. Consistent with this survey, we observed that MC3T3-E1 cells cultured on MBG-NH2 /EGF accelerated osteoblastic marker gene expressions, including osteopontin (Opn) and osteocalcin (Ocn). Taken together, we conclude that the osteoblast differentiation and mineralization were accelerated in MC3T3-E1 cells cultured on MBG-NH2 /EGF through ERK-activated Runx2 pathway. These findings support the idea that MBG-NH2 /EGF is a potential biomaterial for bone tissue repair in bone defect-related diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app