Add like
Add dislike
Add to saved papers

Observation of Clinically Relevant Drug Interaction in Chimeric Mice with Humanized Livers: The Case of Valproic Acid and Carbapenem Antibiotics.

BACKGROUND AND OBJECTIVE: Human in vitro and dog in vitro/in vivo researches indicate that the drug-drug interaction (DDI) of decreased plasma valproic acid (VPA) concentration by co-administration of carbapenem antibiotics is caused by inhibition of acylpeptide hydrolase (APEH)-mediated VPA acylglucuronide (VPA-G) hydrolysis by carbapenems. In this study, we investigated VPA disposition and APEH activities in TK-NOG chimeric mice, whose livers were highly replaced with human hepatocytes, to evaluate the utility of this animal model and the clinical relevance of the DDI mechanism.

METHODS: VPA and VPA-G concentrations in plasma, urinary excretion of VPA-G and APEH activity in humanized livers were measured after co-administration of VPA with meropenem (MEPM) to chimeric mice.

RESULTS: After co-administration with MEPM to the chimeric mice, plasma VPA concentration more rapidly decreased than without the co-administration. An increase in plasma AUC and urinary excretion of VPA-G was also observed. APEH activity in humanized livers was strongly inhibited even at 24 h after co-administration of MEPM to the chimeric mice.

CONCLUSION: The DDI of VPA with carbapenems was successfully observed in chimeric mice with humanized livers. The DDI was caused by long-lasting inhibition of hepatic APEH-mediated VPA-G hydrolysis by carbapenems, which strongly supports the APEH-mediated mechanism of the clinical DDI. This is the first example showing the usefulness of chimeric mice with humanized livers for evaluation of a DDI via non-cytochrome P450 enzyme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app