JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Acute and Long-Term Impact of High-Protein Diets on Endocrine and Metabolic Function, Body Composition, and Exercise-Induced Adaptations.

BACKGROUND: High-protein diets have been shown to improve body composition through alterations in satiety, muscle protein synthesis, and the thermic effect of food.

AIM: Given these findings, the purpose of this review is to discuss the integration of the specific hormonal and metabolic effects of high-protein diets following both acute and long-term usage, especially with regard to body composition.

METHODS: Full-text articles were obtained through PubMed by using the terms "high-protein diet and body composition," "high-protein diet and exercise," "high-protein diet risk," "high-protein diet side effects," "protein quality PDCAAS," "RDA for protein," and "daily protein recommendation." Articles were initially screened according to their title and abstract; careful evaluation of the full manuscripts was then used to identify relevant articles.

RESULTS: The higher satiety exerted by high-protein diets is generated through increments in anorexigenic, as well as decrements in orexigenic hormones. Improvements in muscle mass are achieved by activation of muscle protein synthesis acting through the mTOR pathway. High thermic effect of food is caused due to necessary deamination, gluconeogenesis, and urea synthesis caused by high-protein diets. Interestingly, high-protein diets in both hypo- and normocaloric conditions have shown to improve body composition, whereas in combination with hypercaloric conditions does not seem to increase fat mass, when the excess energy comes from protein.

CONCLUSIONS: High protein diets effectively improve body composition by acting through different pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app