Add like
Add dislike
Add to saved papers

Heterologous Expression of the Piezo1-ASIC1 Chimera Induces Mechanosensitive Currents with Properties Distinct from Piezo1.

Neuron 2017 April 20
Piezo1 represents a prototype of the mammalian mechanosensitive cation channel, but its molecular mechanism remains elusive. In a recent study, we showed that C-terminal region, which contains the last two TMs, of 2189-2547 of Piezo1 forms the bona fide pore module, and systematically identified the pore-lining helix and key pore-property-determining residues (Zhao et al., 2016). Furthermore, we have engineered the Piezo1(1-2190)-ASIC1 chimera (fusing the N-terminal region of 1-2190 to the mechano-insensitive ASIC1) that mediated mechanical- and acid-evoked currents in HEK293T cells, indicating the sufficiency of the N-terminal region in mechanotransduction. Now in a Matters Arising, the authors specifically questioned the implication of the chimera data among the many findings shown in our paper. They replicated the chimera-mediated mechanosensitive currents in HEK293T cells that have nearly no detectable expression of endogenous Piezo1, but paradoxically found the chimera to be less effective in Piezo1 knockout HEK293T cells, indicating the involvement of endogenous Piezo1. In this Matters Arising Response, we discuss the chimera results and consider potential interpretations in light of the Matters Arising from Dubin et al. (2017), published concurrently in this issue of Neuron. Please see also the response from Hong et al. (2017), published in this issue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app