Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MicroRNA-27a-3p Modulates the Wnt/β-Catenin Signaling Pathway to Promote Epithelial-Mesenchymal Transition in Oral Squamous Carcinoma Stem Cells by Targeting SFRP1.

Scientific Reports 2017 April 21
This study aimed to elucidate how microRNA27a-3p (miR-27a-3p) modulates the Wnt/β-catenin signaling pathway to promote the epithelial-mesenchymal transition (EMT) in oral squamous carcinoma stem cells (OSCSCs) by targeting secreted frizzled-related protein 1 (SFRP1). Flow cytometry was used to sort OSCSCs from the SCC-9 and Tca8113 cell lines. The OSCSCs were randomly assigned into the miR-27a-3p inhibitors group, the miR-27a-3p inhibitors-NC group, the si-SFRP1 group, the si-SFRP1 + miR-27a-3p inhibitors group and the blank group. A luciferase reporter, immunofluorescence and Transwell assays were performed to detect luciferase activity, SFRP1, and cell migration and invasion, respectively. The mRNA expression of miR-27a-3p, SFRP1 and EMT markers (E-cadherin, N-cadherin, vimentin and ZEB1) were detected using qRT-PCR. The protein expression of SFRP1, EMT markers and the proteins of the Wnt/β-catenin signaling pathway was detected by Western blotting. OSCSCs showed up-regulated miR-27a-3p, Wnt/β-catenin signaling pathway-related proteins, vimentin, N-cadherin and ZEB1 and down-regulated SFRP1 and E-cadherin. MiR-27a-3p targeted SFRP1. Down-regulated miR-27a-3p resulted in increased E-cadherin and SFRP1 but decreased vimentin, N-cadherin, ZEB1, the Wnt/β-catenin signaling pathway-related proteins, and invasive and migratory cells. Silenced SFRP1 reversed this effect. We found that miR-27a-3p modulated the Wnt/β-catenin signaling pathway to promote EMT in OSCSCs by down-regulating SFRP1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app