Add like
Add dislike
Add to saved papers

Mutations in IFT-A satellite core component genes IFT43 and IFT121 produce short rib polydactyly syndrome with distinctive campomelia.

Cilia 2017
BACKGROUND: Skeletal ciliopathies comprise a spectrum of ciliary malfunction disorders that have a profound effect on the skeleton. Most common among these disorders is short rib polydactyly syndrome (SRPS), a recessively inherited perinatal lethal condition characterized by a long narrow chest, markedly shortened long bones, polydactyly and, often, multi-organ system involvement. SRPS shows extensive locus heterogeneity with mutations in genes encoding proteins that participate in cilia formation and/or function.

RESULTS: Herein we describe mutations in IFT43 , a satellite member of the retrograde IFT-A complex, that produce a form of SRPS with unusual bending of the ribs and appendicular bones. These newly described IFT43 mutations disrupted cilia formation, produced abnormalities in cartilage growth plate architecture thus contributing to altered endochondral ossification. We further show that the IFT43 SRPS phenotype is similar to SRPS resulting from mutations in the gene encoding IFT121 (WDR35), a direct interactor with IFT43.

CONCLUSIONS: This study defines a new IFT43 -associated phenotype, identifying an additional locus for SRPS. The data demonstrate that IFT43 is essential for ciliogenesis and that the mutations disrupted the orderly proliferation and differentiation of growth plate chondrocytes, resulting in a severe effect on endochondral ossification and mineralization. Phenotypic similarities with SRPS cases resulting from mutations in the gene encoding the IFT43 direct interacting protein IFT121 suggests that similar mechanisms may be disrupted by defects in these two IFT-A satellite interactors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app