Add like
Add dislike
Add to saved papers

Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors.

Wearable sensors can provide quantitative, gait-based assessments that can translate to point-of-care environments. This investigation generated elderly fall-risk predictive models based on wearable-sensor-derived gait data and prospective fall occurrence, and identified the optimal sensor type, location, and combination for single and dual-task walking. 75 individuals who reported six month prospective fall occurrence (75.2 ± 6.6 years; 47 non-fallers and 28 fallers) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensinginsoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Fall-risk classificationmodels were assessed for all sensor combinations and three model types: neural network, naïve Bayesian, and support vector machine. The best performing model used a neural network, dual-task gait data, and input parameters from head, pelvis, and left shank accelerometers (accuracy = 57%, sensitivity = 43%, and specificity = 65%). The best single-sensor model used a neural network, dual-task gait data, and pelvis accelerometer parameters (accuracy = 54%, sensitivity = 35%, and specificity = 67%). Single-task and dual-task gait assessments provided similar fall-risk model performance. Fall-risk predictive models developed for point-of-care environments should use multi-sensor dual-task gait assessment with the pelvis location considered if assessment is limited to a single sensor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app