JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

The maize plastid psbB-psbF-petB-petD gene cluster: spliced and unspliced petB and petD RNAs encode alternative products.

The chloroplast psbB, psbF, petB, and petD genes are cotranscribed and give rise to many overlapping RNAs. The mechanism and significance of this mode of expression are of interest, particularly because the accumulation of the psb and pet gene products respond differently to both light and, in C4 species such as maize, developmental signals. We present an analysis of the maize psbB, psbF, petB, and petD genes and intergenic regions. The genes are organized similarly in maize (a C4 species) and in several C3 species. Functional class II-like introns interrupt the 5' ends of petB and petD. Both spliced and unspliced RNAs accumulate; these encode alternative forms of the petB and petD proteins, differing at their N-termini. Promoter-like elements between psbF and petB, and biased codon usage suggest that the differential regulation of the psb and pet genes might be achieved at both the transcriptional and translational levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app