JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In vivo evaluation of the hippocampal glutamate, GABA and the BDNF levels associated with spatial memory performance in a rodent model of neuropathic pain.

BACKGROUND: Patients with chronic pain usually suffer from learning and memory impairment which may significantly decrease their quality of life. Despite laboratory and clinical studies, the mechanism underlying this memory impairment remains elusive. We evaluated the effect of chronic pain on the glutamate and GABA levels and BDNF expression in the CA1 region of hippocampus as a possible explanation for memory impairment related to neuropathic pain.

METHODS: In this respect, 30 male rats were randomly allocated to 3 groups as control, sham and neuropathic. Neuropathic pain was induced by a chronic constriction injury of the sciatic nerve (CCI) and mechanical allodynia and the spatial memory was assessed using the Von Frey filaments and Morris water maze respectively. To determine the potential mechanisms, the in vivo extracellular levels of glutamate and γ-aminobutyric acid (GABA) were measured by microdialysis and the brain-derived neurotrophic factor (BDNF) expression was determined by using western blots technique in the hippocampus on days 14 and 21 post-CCI.

RESULTS: We showed that CCI impaired spatial learning and memory in Morris water maze (MWM) task. BDNF expression level and glutamate concentration significantly decreased in rats with chronic constriction injury of the sciatic nerve (P<0.001, F=7.3, F=23.23). In addition, GABA increased in hippocampal CA1 region (P<0.001, F=39.2) when the pain threshold was minimum. Nevertheless, these changes reversed while pain was relieved spontaneously.

CONCLUSION: Chronic pain induced by constriction of the sciatic nerve impairs the spatial learning and memory function in rats. This effect exerts through the increase in GABA concentration and decrease in the glutamate and BDNF levels in the CA1 region of the hippocampus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app