JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Potential Roles of Mitochondria-Associated ER Membranes (MAMs) in Traumatic Brain Injury.

The endoplasmic reticulum (ER) and mitochondria have both been shown to be critical in cellular homeostasis. The functions of the ER and mitochondria are independent but interrelated. These two organelles could form physical interactions, known as MAMs, to regulate physiological functions between ER and mitochondria to maintain Ca2+ , lipid, and metabolite exchange. Several proteins are located in MAMs, including RNA-dependent protein kinase (PKR)-like ER kinase, inositol 1,4,5-trisphosphate receptors, phosphofurin acidic cluster sorting protein-2 and sigma-1 receptor to ensure regulation. Recent studies indicated that MAMs participate in inflammation and apoptosis in various conditions. All of these functions are crucial in determining cell fate following traumatic brain injury (TBI). We hypothesized that MAMs may associate with TBI and could contribute to mitochondrial dysfunction, ER stress, autophagy dysregulation, dysregulation of Ca2+ homeostasis, and oxidative stress. In this review, we summarize the latest understanding of MAM formation and their potential regulatory role in TBI pathophysiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app