Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Doxorubicin-induced inhibition of prolyl hydroxylation during collagen biosynthesis in human skin fibroblast cultures. Relevance to imparied wound healing.

Previous clinical and experimental observations have indicated that wound healing is impaired as a result of treatment with doxorubicin, a chemotherapeutic agent. In this study, the effects of doxorubicin were examined in human skin fibroblast cultures with respect to collagen production and fibroblast proliferation. The results indicated that the synthesis of hydroxyproline as a marker of collagen production was markedly reduced, with an approximate concentration of inhibitor yielding 50% inhibition of 1 microM. This inhibition could be explained, in part, by generalized inhibition of total protein synthesis, but in addition, there was a significant inhibition of prolyl hydroxylation during collagen biosynthesis, as indicated by a reduction in the ratio of [3H]hydroxyproline/([3H]hydroxyproline + [3H]proline). The latter effect was shown to result from inhibition of prolyl hydroxylase by doxorubicin. As a consequence of reduced prolyl hydroxylation, the stability of newly synthesized procollagen triple helix was shown to be compromised. At the same time, doxorubicin significantly reduced fibroblast proliferation in vitro, as determined by [3H]thymidine incorporation. Thus, reduced collagen production and inhibition of fibroblast proliferation may explain the reduced wound healing in patients undergoing treatment with doxorubicin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app