Add like
Add dislike
Add to saved papers

Reduction of physiological strain under a hot and humid environment by a hybrid cooling vest.

Cooling treatment is regarded as one of good practices to provide safe training conditions to athletic trainers in the hot environment. The present study aimed to investigate whether wearing a commercial lightweight and portable hybrid cooling vest that combines air ventilation fans with frozen gel packs was an effective means to reduce participants' body heat strain. In this within-subject repeated measures study, 10 male volunteers participated in two heat-stress trials (one with the cooling vest - COOL condition, and another without - CON condition, in a randomized order) inside a climatic chamber with a controlled ambient temperature 33 °C and relative humidity (RH) 75% on an experimental day. Each trial included a progressively incremental running test, followed by a 40 min post-exercise recovery. Core temperature (Tc), heart rate (HR), sweat rate, rating of perceived exertion (RPE), exercise duration, running distance, power output, and sweat rate were measured. When comparing the two conditions, a non-statistically significant moderate cooling effect in rate of increase in Tc (0.03±0.02 °C/min for COOL vs. 0.04±0.02 °C/min for CON, p=0.054, d=0.57), HR (3±1 bpm/min for COOL vs. 4±1 bpm/min for CON, p=0.229, d=0.40), and physiological strain index (PSI) (0.20±0.06 unit/min for COOL vs. 0.23±0.06 unit/min for CON, p=0.072, d=0.50) was found in the COOL condition during exercise. A non-statistically significant (p>0.05) trivial cooling effect (d<0.2) was observed between the COOL and CON conditions for measures of exercise duration, running distance, power output, sweat rate and RPE. It is concluded that the use of the hybrid cooling vest achieved a moderate cooling effect in lowering the rate of increase in physiological strain without impeding the performance of progressively incremental exercise in the heat.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app